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POWERS OF HAMILTONIAN CYCLES

IN µ-INSEPARABLE GRAPHS

O. EBSEN, G. S. MAESAKA, C. REIHER, M. SCHACHT and B. SCHÜLKE

Abstract. We consider sufficient conditions for the existence of k-th powers of
Hamiltonian cycles in n-vertex graphs G with minimum degree µn for arbitrarily

small µ > 0. About 20 years ago Komlós, Sárközy, and Szemerédi resolved the

conjectures of Pósa and Seymour and obtained optimal minimum degree conditions
for this problem by showing that µ = k

k+1
suffices for large n. Consequently,

for smaller values of µ the given graph G must satisfy additional assumptions.

We show that inducing subgraphs of density d > 0 on linear subsets of vertices
and being inseparable, in the sense that every cut has density at least µ > 0, are

sufficient assumptions for this problem. This generalises a recent result of Staden

and Treglown.

1. Introduction and new result

We study sufficient conditions for the existence of powers of Hamiltonian cycles in
large finite graphs. For k ∈ N the k-th power of a given graph H is the graph Hk

on the same vertex set with xy being an edge in Hk if x and y are two vertices
of H that are connected in H by a path of at most k edges. In a k-th power
of a cycle every k + 1 consecutive vertices (consecutive in the underlying cyclic
ordering of the cycle) span a clique Kk+1. In particular, if a graph G = (V,E)

contains the k-th power of a Hamiltonian cycle, it also contains b |V |
k+1c pairwise

vertex disjoint copies of Kk+1 and G contains a Kk+1-factor if |V | is divisible
by k + 1.

Establishing sufficient conditions for the existence of Hamiltonian cycles in
graphs has a long history and Dirac’s well known theorem [3] yields a best possi-
ble minimum degree condition for this problem. The minimum degree of a graph
turned out to be an interesting parameter for enforcing a given spanning subgraph
and establishing optimal minimum degree conditions for those problems turned
out to be a fruitful research direction in extremal graph theory (see, e.g., [1] and
the references therein). Already about 50 years ago the minimum degree problem
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for Kk+1-factors was resolved by Corrádi and Hajnal [2] for k = 2 and by Ha-
jnal and Szemerédi [5] for every k ≥ 3. Pósa (see [4]) and Seymour [11] asked
for a common generalisation of those results on factors and Dirac’s theorem and
conjectured that the best possible minimum degree conditions for Kk+1-factors
and k-th powers of Hamiltonian cycles are the same (given that the number of
vertices is divisible by k + 1). The general conjecture was affirmatively resolved
for sufficiently large graphs by Komlós, Sárközy, and Szemerédi [6] by establishing
the following result.

Theorem 1.1 (Komlós, Sárközy & Szemerédi 1998). For every integer k ≥ 1
there exists n0 such that if G is a graph on n ≥ n0 vertices with minimum degree
δ(G) ≥ k

k+1n, then G contains the k-th power of a Hamiltonian cycle. �

Note that for k = 1 we recover Dirac’s theorem (up to the value of n0) and com-
plete and nearly balanced (k + 1)-partite graphs show that the minimum degree
condition in Theorem 1.1 is best possible for every k. Those lower bound construc-
tions are ruled out by restricting the independence number of the large graph G.
Here we consider the following robust restriction that imposes a uniformly positive
edge density for induced subgraphs on linear sized subsets of vertices.

Definition 1.2. We say that a graph G = (V,E) is (%, d)-dense for % > 0 and

d ∈ [0, 1] if e(X) ≥ d
(|X|

2

)
− %|V |2 for every subset X ⊆ V , where e(X) denotes

the number of edges of G that are contained in X.

In fact, it was shown by Staden and Treglown [12] that such a hereditary
density assumption for any d > 0 and sufficiently small % > 0 allows us to reduce
the minimum degree condition for k-th powers of Hamiltonian cycles to

(1) δ(G) ≥
(1

2
+ µ

)
|V |,

for any µ>0 and sufficiently large vertex sets V =V (G) (see also [9] for Kk+1-fac-
tors). In particular, the minimum degree assumption becomes independent of k.
Moreover, the graph G consisting of two disjoint cliques on close to n/2 vertices
(one of them with the number of vertices not divisible by k + 1) shows that this
degree condition is essentially optimal for guaranteeing clique factors or powers of
Hamiltonian cycles. However, a bipartite version of Definition 1.2, which requires

(2) e(X,Y ) =
∣∣{(x, y) ∈ X × Y : xy ∈ E(G)

}∣∣ ≥ d |X||Y | − %|V |2 ,
for all subsets X, Y ⊆ V , rules out this example. It was observed by Glock and
Joos (see [12, Concluding Remarks]) that imposing property (2) on G allows a
further relaxation of the minimum degree condition for G from (1) to µ|V | for
arbitrary µ > 0. We show that requiring property (2) for all subsets X and Y is
not needed. It already suffices to assume it only for vertex bipartitions of G.

Definition 1.3. We say that a graph G = (V,E) is µ-inseparable for some
µ > 0 if e(X,V rX) ≥ µ |X||V rX| for every subset X ⊆ V .

Invoking this assumption to subsets X consisting of one vertex only, yields a
linear minimum degree condition for µ-inseparable graphs G.
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Our new result asserts that graphs satisfying the properties of Definitions 1.2
and 1.3 contain k-th powers of Hamiltonian cycles for every fixed integer k ≥ 1.

Theorem 1.4 (Main result). For every integer k ≥ 1 and all constants d ∈ [0, 1]
and µ > 0, there exist % > 0 and n0 such that the following holds.

If G = (V,E) is a (%, d)-dense and µ-inseparable graph with |V | = n ≥ n0
vertices, then G contains the k-th power of a Hamiltonian cycle.

The proof of Theorem 1.4 utilises the absorption method of Rödl, Ruciński, and
Szemerédi [10], which, roughly speaking, consists of the following three parts:

1. finding an almost perfect cover of only “few” k-th powers of paths,
2. ensuring the abundant existence of so-called absorbers, and
3. connecting those absorbers and paths to an almost spanning k-th power of

a cycle.

For the first and second part of the absorption method our proof relies only on the
(%, d)-denseness assumption, while the third part is based on both assumptions
and uses ideas from [8] and we omit the details here.

It is easy to see that every graph G = (V,E) with minimum degree at least
δ(G) ≥ (1/2 + µ)|V | is µ-inseparable and, consequently, Theorem 1.4 strengthens
the result of Staden and Treglown for powers of Hamiltonian cycles [12].

Moreover, the n-vertex graph G obtained from two cliques of size (1/2 + µ)n
which intersect in 2µn vertices is (%, 1/2)-dense (for any fixed % > 0), while it fails
to satisfy property (2) for arbitrary subsets X and Y . This shows that our result
is not covered by the observation of Glock and Joos [12, Concluding Remarks].

On the other hand, we remark that Staden and Treglown and also Glock and
Joos not only considered the embedding problem for powers of Hamiltonian cycles,
but more generally for bounded degree graphs (with and without small bandwidth,
see [12] for details). Theorem 1.4 can also be used to obtain such a strengthening
for a variant of the bandwidth theorem under the same assumptions (see the full
version of the manuscript for details).

2. Open problems

An interesting direction of research might be to find a common generalisation of
the approximate version of Theorem 1.1 and of Theorem 1.4. More precisely, this
would require to weaken the assumptions of Theorem 1.4 in such a way that, on
one hand, every n-vertex graph with minimum degree ( k

k+1 + o(1))n would satisfy
them and, on the other hand, they still ensure the existence of a k-th power of a
Hamiltonian cycle.

For k = 1, i.e., for the existence of Hamiltonian cycles, such a common gener-
alisation can be obtained by relaxing the (%, d)-denseness condition only for sets
X ⊆ V of size at least |X| > |V |/2, while for smaller sets we require that either
they induce d|X|2/2−%n2 edges or there are at least (1−%)|X| vertices outside X
with at least d|X| − %n neighbours in X.

In fact, for an absorption-type proof for the existence of Hamiltonian cycles we
remark that µ-inseparability alone suffices to build the connection of the pieces
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from the almost perfect path cover and from the absorbers in this case. Moreover,
a combination of some ideas from [7] and [8] shows that µ-inseparability also
yields absorbers for such an approach as long as there are no independent sets of
size n/2. The relaxation of the (%, d)-denseness assumption outlined above still
guarantees almost perfect matchings in a “robust” way, which can be utilised to
guarantee an almost perfect path cover (for details we refer to the full version of
the manuscript).

For higher powers (k ≥ 2) of Hamiltonian cycles we remark that µ-inseparability
does not suffice to ensure the existence of absorbers. For example, random bipar-
tite graphs of edge density 2µ + o(1) are µ-inseparable, while absorbers for k-th
powers of Hamiltonian cycles must contain cliques of order k + 1. However, the
main challenge seems to be to find a useful condition that guarantees almost per-
fect Kk+1-factors in a “robust” way.
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its Application (Erdős, P., Renyi, A., Sós,V. T., eds.) vol. II, 1970, 601–623.
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